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1 Project Objectives

The overall goal of this research project is to develop a theoretical framework for describing and rea-
soning about changes in software. This theory should provide a basis for the implementation of tools to
support software maintenance tasks in the presence of changes. For the development of this theory the
following specific research objectives have been identified.

(1) Representation of changes and changeable objects. Find a simple but flexible and expressive rep-
resentation for objects and their changes, and provide a formal definition for the semantics of the
change representation.

(2) Properties of change representations. Identify laws for the change representation that characterize
the principle nature of changes and can serve as the basis for identifying semantics-preserving change
transformations.

(3) Property preservation. One principal problem associated with changes is that they might invalidate
important properties of the object to be changed. Therefore, we need to find conditions that guarantee
the preservation of these properties under changes, or more generally, the evolution of properties
along well defined gradients.

(4) Efficient property checking. We need efficient ways to check properties for change objects since the
representation of changes within objects will produce many different objects at once.

(5) Change editing and exploration. Changes transform changeable objects into one another. A collec-
tion of changeable objects and their relating changes can be viewed as a space that can be navigated.
We want to know how change exploration can be supported by operations that could form the basis
for a corresponding editing tool, and how property preservation and evolution can be integrated into
this process.

2 Status of Effort

This project has made substantial progress toward the goals and objectives formulated in the project
proposal. In this section we will briefly summarize the major accomplishments that we have made. In
Section 3 we will then describe the most important findings and results in more detail.

A first important insight is that the concept of change can be regarded as a special form of variation.
More specifically, if we identify one of two given variants A and A′ as “new” (let’s say A′) and the other
one as “old”, then we can speak of a change “from” A “to” A′. In other words, the concept of variation
is in a sense a symmetric generalization of the notion of change. In most situations it is not necessary
to make this distinction between different roles of variants, and since all the theoretical results hold for
variation in general, we will talk in the remainder of this document about variation instead of change.
Since the purpose of having variation in software is to offer choices, we also call a group of variants a
choice.

With regard to the first two objectives of finding a change representation and investigating its proper-
ties, we have developed the choice calculus [6], a formal approach to representing variation and changes
in structured documents. The key constructs of the choice calculus are scoped choices that can be ar-
bitrarily nested and grouped into dimensions. For dimensions and choices we have identified numerous
laws and transformation rules that allow flexible representations for variation to support different editing
and viewing scenarios. We have also developed a design theory that can improve representations by
eliminating redundancies or dead variants.

The representation offered by the choice calculus has applications in many areas [4]. One specific
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application is in the domain of product engineering. We have developed techniques to supply prod-
uct engineers with tailored feature-selection sequences to derive products from (software) product lines
more efficiently [1]. The method is based on the selectivity of features (that is, the number of products
that contain a particular feature) and the impact of a selected feature on the selection of other features.
Moreover, our approach helps with the problem of unexpected side effects of feature selection in later
stages of the selection process, which is commonly considered a difficult problem. An evaluation of the
technique demonstrates significant improvements in efficiency for the feature selection process.

The integrated representation of changes in software through choices, which becomes possible
through the constructs of the choice calculus, has also led to the idea of program fields as an abstraction
for representing sets of programs [5]. Program fields offer new possibilities for the systematic manage-
ment of software changes.

We have addressed the third and fourth research objectives regarding property checking and preser-
vation by developing a type system for variational lambda calculus, a variant of lambda calculus that
integrates concepts of the choice calculus to represent variation in functional programs [3]. To make
variational type systems feasible in practice, we have developed a method for variational type inference
that determines the types for sets of related programs. Since type errors may be present only in some
of the potentially large number of program variants, it is important to ensure that type information for
type-correct variants is cleanly separated from the type errors of incorrect variants [2]. The brute-force
approach of generating all variants and type checking each one individually is generally not feasible
since the number of plain programs represented by a variational program grows exponentially with the
number of dimensions of variation. The use of the choice calculus leads to significant improvements
since it can exploit the fact that related programs contain many shared parts and that many of the types of
even non-shared program parts are identical, which leads to a reduction of the number of choices in the
computed types. This work has produced a variational unification algorithm and insights into algorithms
on variational structures that transcend the particular application of type inference.

Regarding the objective of change editing we have performed a user study that has demonstrated that
the dimension-structured choice constructs of the choice calculus helps users reason about variational
code faster and more accurately and ultimately supports code understanding better than traditional CPP
annotations [8].

Finally, to support the objective of exploring changes and change editing we have developed a
domain-specific language (DSL) to express transformations of variation representations [7]. This DSL
provides the basis for writing programs to query, manipulate, and analyze variation structures. These
tasks are examples of the more general notion of variation programming. The concept of variation
programming specifically supports the systematic migration of software and the exploratory editing of
software artifacts. The developed DSL illustrates how variation programming tasks can be dealt with
systematically. This DSL separates variation representation and transformation into two distinct levels,
which limits its scope. Therefore, we have also developed a generalization of the choice calculus that
includes computational features [9] that can arbitrarily mix and nest choice annotations and transforma-
tions.

3 Accomplishments & Findings

In this section we describe the individual accomplishments of the research project in more detail. The
following accomplishments will be discussed.

1. The choice calculus as a representation for variation and change
2. A formal semantics for the choice calculus
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3. Equivalence relationships for choice calculus expressions
4. Normalization of choice calculus expressions
5. Design rules for choice representations
6. Program fields for representing sets of related programs
7. Variation types
8. A variational type system
9. Variational type inference

10. Making variational type systems error-tolerant
11. Support for variational editing
12. A DSL for variation programming

3.1 The choice calculus representation

In the choice calculus a variation is expressed by a choice D〈e1, . . . ,en〉 between n alternative expressions,
associated with a dimension D. Dimensions synchronize the selection of alternatives from different
choices. A dimension declaration dim D〈t1, . . . , tn〉, declares a new dimension D with n tags. If tag ti is
selected from D, then every choice bound by D will be replaced by its ith alternative ei, and the dimension
declaration will be removed.

As an example, consider the following four implementations of the function twice, which takes a
numerical argument and returns that value doubled.

Implementation

plus times

Name

x
int twice(int x) {

return x+x;

}

int twice(int x) {

return 2*x;

}

y
int twice(int y) {

return y+y;

}

int twice(int y) {

return 2*y;

}

These definitions vary in two independent dimensions with two possibilities each. The first dimension
of variation is in the name of the function’s argument: those in the top row use x and those in the bottom
use y. The second dimension of variation is in the arithmetic operation used to implement the function:
addition in the left column and multiplication in the right column.

We can represent all four implementations of twice in a single choice calculus expression, as shown
below.

dim Par〈x,y〉 in
dim Impl〈plus, times〉 in
twice (int Par〈x,y〉) {

return Impl〈Par〈x,y〉+Par〈x,y〉,2*Par〈x,y〉〉;
}

In this example, we begin by declaring the two dimensions of variation using the choice calculus dim
construct. For example, dim Par〈x,y〉 declares a new dimension Par with tags x and y, representing the
two possible parameter names. The in keyword denotes the scope of the declaration, which extends to
the end of the expression if not explicitly indicated otherwise (for example, by parentheses).

Each dimension represents an incremental decision that must be made in order to resolve a choice
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e ::= a�e, . . . ,e� Object Structure
| dim D〈t, . . . , t〉 in e Dimension
| D〈e, . . . ,e〉 Choice
| share v=e in e Sharing
| v Reference

Figure 1: Choice calculus syntax. Arbitrary tree structures that store information of type “a” can be
annotated by choices and dimensions. A sharing construct allows the removal of redundancy in variation
representations.

calculus expression into a concrete program variant. The choices bound to that dimension are synchro-
nized with this decision. This incremental decision process is called tag selection. When we select a tag
from a dimension, the corresponding alternative from every bound choice is also selected, and the dimen-
sion declaration itself is eliminated. For example, if we select the y tag from the Par dimension (Par.y),
we produce the following choice calculus expression in which the Par dimension has been eliminated
and each of its choices has been replaced by its second alternative.

dim Impl〈plus, times〉 in
twice (int y) {

return Impl〈y+y,2*y〉;
}

If we then select Impl.times, we produce the variant of twice in the lower-right corner of the shown grid
of variants.

In the above examples, the choice calculus notation is embedded within the syntax of the object
language. This embedding is not a textual embedding in the way that, for example, the C Preprocessor’s
#ifdef statements are integrated with program source code. Instead, choices and dimensions operate
on an abstract-syntax-tree view of the object language. For example, the AST for twice x = x+x can
be written as =�twice,x,+�x,x��, that is, the definition is represented as a tree that has the = operation
at the root and three children, (1) the name of the function (twice), (2) its parameter (x), and (3) the
defining expression, which is represented by another tree with root + and two children that are both given
by x.

The syntax of choice calculus expressions follows from the discussion in the previous section and is
provided explicitly in Figure 1. In addition to the constructs already discussed the choice calculus also
offers a construct for sharing expressions (for details, see [6, 7]).

There are a few syntactic constraints on choice calculus expressions not expressed in the grammar.
First, all tags in a single dimension must be pairwise different so they can be uniquely referred to.
Second, each choice D〈en〉 must be within the static scope of a corresponding dimension declaration
dim D〈tn〉 in e. That is, the dimension D must be defined at the position of the choice, and the dimension
must have exactly as many tags as the choice has alternatives. Finally, each sharing variable reference v
must be within scope of a corresponding share expression defining v.

3.2 Choice calculus semantics

In Section 3.1 we have described tag selection as a means to eliminate a dimension of variation. We
write becD.t for the selection of tag t from dimension D in expression e. Tag selection consists of (1)
finding the first declaration dim D〈tn〉 in e′ in a preorder traversal of e, (2) replacing every choice bound
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ba�e1, . . . ,en�cD.i = a�be1cD.i, . . . ,bencD.i�

bdim D′〈tn〉 in ecD.i =

{
dim D′〈tn〉 in e if D = D′

dim D′〈tn〉 in becD.i otherwise

bD′〈e1, . . . ,en〉cD.i =

{
beicD.i if D = D′

D′〈be1cD.i, . . . ,bencD.i〉 otherwise

bshare v=e in e′cD.i = share v=becD.i in be′cD.i

bvcD.i = v

Figure 2: Choice elimination. Selection of the nth tag from a dimension leads to the selection of the nth
alternative from each choice bound by that dimension. Each such selection eliminates one dimension
and all bound choices.

by the dimension in e′ with its ith alternative, where i is the index of t in tn, and (3) removing the
dimension declaration. Step (2) of this process is called choice elimination, written be′cD.i (where the
tag name has been replaced by the relevant index), and defined formally in Figure 2. This definition is
mostly straightforward, replacing a matching choice with its ith alternative and otherwise propagating
the elimination downward. Note, however, that propagation also ceases when a dimension declaration of
the same name is encountered—this maintains the static scoping of dimension names.

We write JeK to indicate the semantics of choice calculus expression e, which is given by a function
that maps sequences of tags to plain expressions. We represent the denotation of e (that is, the mapping
from decisions to plain expressions) as a set of pairs, and we represent decisions as n-tuples of dimension-
qualified tags. For simplicity and conciseness, we enforce in the definition of the semantics that tags are
selected from dimensions in a fixed order, the order that the dimension declarations are encountered in a
preorder traversal of the expression (see [6] for a discussion of this design decision). For instance, in the
following example, tags are always selected from dimension A before dimension B.

Jdim A〈a1,a2〉 in A〈1,dim B〈b1,b2〉 in B〈2,3〉〉K =
{(A.a1,1),((A.a2,B.b1),2),((A.a2,B.b2),3)}

Note that dimension B does not appear at all in the decision of the first entry in this denotation since it is
eliminated by the selection of the tag A.a.

The formal definition of the semantics of choice calculus expressions in terms of a helper function
V is shown in Figure 3. The parameter to this function, ρ , is an environment, implemented as a stack,
mapping share-variables to plain expressions. The semantics of e is then defined as an application of V
with an initially empty environment, that is, JeK =V∅(e).

In the definition we use δ to range over decisions, concatenate decisions δ1 and δ2 by writing δ1δ2,
and use δ n to represent the concatenation of decisions δ1, . . . ,δn. Similarly, lists of expressions en can be
expanded to e1, . . . ,en, and likewise for lists of tags tn. We associate v with e in environment ρ with the
notation ρ⊕ (v,e), and lookup the most recent expression associated with v by ρ(v).

For structure expressions there are two sub-cases to consider. If the expression is a leaf, then the
expression is already plain, so the result is an empty decision (represented by the nullary tuple ()) mapped
to that leaf. Otherwise, we recursively compute the semantics of each subexpression and, for each
combination of entries (one from each recursive result), concatenate the decisions and reconstruct the
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Vρ(a��) = {((),a��)}
Vρ(a�en�) = {(δ n,a�e′n�) | (δ1,e′1) ∈Vρ(e1), . . . ,(δn,e′n) ∈Vρ(en)}

Vρ(dim D〈tn〉 in e) = {((D.ti,δ ),e′) | i ∈ {1, . . . ,n}, (δ ,e′) ∈Vρ(becD.i)}

Vρ(share v=e1 in e2) =
⋃
{{(δ1δ2,e′2) | (δ2,e′2) ∈Vρ⊕(v,e′1)(e2)} | (δ1,e′1) ∈Vρ(e1)}

Vρ(v) = {((),ρ(v))}

Figure 3: Semantics of choice calculus expressions. The semantics is computed with the help of an
auxiliary function V , which takes an environment of sharing definitions as an additional parameter. The
semantics of an expression e is given by JeK =V∅(e).

(now plain) structure expression.
On a dimension declaration, we select each tag ti in turn, computing the semantics of becD.i and

prepending D.ti to the decision of each entry in the result. Note that there is no case for choices in the
definition of V . Since we assume that all choices are bound, all choices will be eliminated by selections
invoked at their binding dimension declarations. In the event of an unbound choice, the semantics are
undefined.

3.3 Equivalence relationships

The representation of variation with choices is not unique, that is, choices can be generally represented
on different levels of granularity, and dimension definitions can be moved around too. For example, the
following three expression are all equivalent in the sense that JeK = Je′K = Je′′K.

e = dim A〈a,b〉 in 5+A〈1,2〉
e′ = dim A〈a,b〉 in A〈5+1,5+2〉
e′′ = 5+dim A〈a,b〉 in A〈1,2〉

Different representations are useful for different purposes. For example, maximally factored choices (as
in e and e′′) keep common parts out of alternatives as much as possible and thus simplify the editing of
these common parts, avoiding update anomalies. On the other hand, fewer and bigger choices that repeat
common parts are sometimes better suited to compare alternatives than a huge collection of fine-grained
representations. Moreover, having dimensions as far at the top as possible (as in e and e′) reveals the
variational structure better than deeply nested dimensions. This might be desirable or not, depending on
the context.

A complete set of equivalence relationships can be obtained by observing that in principle any syn-
tactic form, that is, Structure, Dimension, Choice, Sharing, or Reference, can be commuted with any
other. This complete set can be found in [6]. An excerpt of the relationships is shown in Figure 4,
which shows rules for factoring and distributing choices across other syntactic constructs. In the rules
we make use of a further notational convention to expose the ith element of a sequence. The pattern
notation en[i :e′] expresses the requirement that ei has the form given by the expression (or pattern) e′.
For example, en[i :e′+1] says that ei must be an expression that matches e′+1.

In the case of nested choices for the same dimension D (rule C-C-MERGE), distribution amounts to
merging the two choices into one. In that case the nested choice (D〈e′n〉) does not really present a choice
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C-S
a�en[i :D〈e′ j:1..k〉]�≡ D〈a�en[i :e′j]�

j:1..k〉
C-B-DEF

share v=D〈en〉 in e≡ D〈(share v=ei in e)i:1..n〉

C-B-USE

share v=e in D〈en〉 ≡ D〈(share v=e in ei)
i:1..n〉

C-D
D 6= D′

dim D′〈tm〉 in D〈en〉 ≡ D〈(dim D′〈tm〉 in ei)
i:1..n〉

C-C-SWAP

D′〈en[i :D〈e′ j:1..k〉]〉 ≡ D〈D′〈[en[i :e′j]〉 j:1..k〉
C-C-MERGE

D〈en[i :e′i]〉 ≡ D〈en[i :D〈e′n〉]〉

Figure 4: Choice commutation rules. Applied from right to left, these rules facilitate the factoring of
common parts out of choices to make choices more focused. Applied from left to right, the rules distribute
context into choices, which can be useful to increase the comprehensibility of individual variants and to
support the editing of variants. This notion of factoring and distribution is also illustrated on a high level
in Figure 5, shown on page 10.

since all alternatives except e′i are dead and cannot be reached because the semantics of tag selection
recursively selects the same component from a nested choice. That is, if tag selection selects D〈e′n〉 as
the ith alternative of the outer choice, it will also select e′i from the inner one.

3.4 Variation Normal Forms

The rules presented in Section 3.3 can be used to transform expressions in many different ways. We
have identified three strategically significant representations: dimension normal form, choice normal
form, and dimension-choice normal form. We can show that any expression can be transformed into
choice normal form, and that any “linearly dimensioned” expression (see below) can be transformed into
dimension normal form and consequently, dimension-choice normal form.

We say that an expression e is in choice normal form (CNF) if it contains only choices that are
maximally factored, that is, e is in CNF if no subexpression of e matches the right-hand side of any of the
rules given in Figure 4 (without violating a premise). CNF is significant because it reduces redundancy
in the representation. This is an important feature for the development of variation editing tools because
it decreases the risk of update anomalies.

We similarly say that an expression e is in dimension normal form (DNF) if all dimensions are
maximally factored. We consider a dimension maximally factored if its declaration appears at the top
of the expression, at the top of an alternative within a choice, or directly beneath another maximally-
factored dimension. DNF is convenient because it groups dimension declarations according to their
dependencies. For example, all dimensions at the top of an expression are independent—the selection
of any tag in any independent dimension does not affect the possible selections in other independent
dimensions. Dimensions grouped within an alternative are dependent on the corresponding tag being
chosen in the enclosing choice—if the tag is not chosen, we need not make a selection in any dimensions
in the group.

Finally, we say that an expression is in dimension-choice normal form (DCNF) if it is in choice
normal form and in dimension normal form. Naturally, DCNF combines the benefits of both CNF and
DNF, avoiding redundancy and clearly revealing the dimension structure. It is therefore a prime candidate
for a variation representation in an editor tool or IDE since it avoids update anomalies while editing and
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it groups related dimensions.
A choice calculus expression e is said to be well dimensioned if each choice D〈e1, . . . ,en〉 is in scope

of a corresponding dimension definition dim D〈t1, . . . , tn〉, that is, the dimension declaration that binds D
introduces exactly as many tags as each choice that references D has alternatives. If all dimension names
in e that are introduced by a dim construct are pairwise different, we say that e is dimension linear. We
call an expression that is well dimensioned and dimension linear linearly dimensioned.

An important structural result for the choice calculus is that any linearly dimensioned expression can
be transformed into DCNF, a fact summarized by the following lemmas and theorem.

Any expression e can be transformed into an equivalent expression e′ that is maximally choice fac-
tored (that is, in CNF). This can be achieved by repeatedly applying the rules from Figure 4 from right
to left.

Lemma 1 ∀e.∃e′.e≡ e′∧ e′ is in CNF.

Lemma 1 is significant on its own, demonstrating that any e can be transformed into CNF, minimizing
redundancy. However, only expressions that are linearly dimensioned can, in general, be brought into
dimension normal form.

Lemma 2 If e is linearly dimensioned, then ∃e′ in DNF such that e≡ e′.

From Lemmas 1 and 2 the following result about dimension-choice normal form follows directly.

Theorem 1 If e is linearly dimensioned, then ∃e′ in DCNF such that e≡ e′.

As an illustration of the three types of normal form, recall the following expressions from Section 3.3.

e = dim A〈a,b〉 in 5+A〈1,2〉
e′ = dim A〈a,b〉 in A〈5+1,5+2〉
e′′ = 5+dim A〈a,b〉 in A〈1,2〉

Comparing these to the definitions above, we see that e is in DCNF, while e′ is (only) in DNF and e′′ is
(only) in CNF.

3.5 Variation Design Theory

Not every choice expression is a good variation representation. A trivial example is a choice of the form
A〈e,e〉 that contains two identical alternatives. Since it does not matter which alternative we select, this
is a “false choice” that could be simply replaced by e.

The goal of a variation design theory is to formulate quality criteria for choices and dimensions that
can serve as guidelines for the design of variation structures. We briefly describe criteria for identifying
spurious choices and dimensions, and transformations to remove them. A more detailed discussion and
other design criteria and transformations can be found in [6].

We say that two alternatives ei and e j of a choice D〈en〉 are equivalent in context C, written as
ei ∼C e j, if JC[D〈en〉]K is unchanged by swapping alternatives ei and e j; that is, if

JC[D〈en〉]K = JC[D〈e1, . . . ,e j, . . . ,ei, . . . ,en〉]K

Note that the context in the definition makes it possible to compare expressions that contain free dimen-
sions or variables (whose definition can be given by the context).

We define the function ᾱC/i(e) to perform the removal of the ith alternative of a choice in context
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C within expression e. This function is defined only if C is a context that matches a choice in e with at
least i alternatives; that is, we assume e = C[D〈en〉] with n ≥ i. Then we obtain the following, obvious
definition.

ᾱC/i(e) =C[D〈e1, . . . ,ei−1,ei+1, . . . ,en〉]

As an example, consider the following expression.

eabx = dim A〈a,b,x〉 in A〈1,1,9〉

With C = dim A〈a,b,x〉 in [], we can remove the second alternative in the choice in eabx by applying
ᾱC/2(eabx). This yields the expression dim A〈a,b,x〉 in A〈1,9〉, which is not well dimensioned. This
example demonstrates that we cannot, in general, simplify a choice that contains equivalent alternatives
in isolation. Since the number of alternatives in a choice must match the number of tags in its binding
dimension, reducing the number of alternatives in a choice requires the removal of the corresponding tag
in the binding dimension to maintain well dimensionedness. In this example, this would actually work
since we have only one choice that is bound by dimension A. But in cases where we have other choices,
the removal of the tag is possible only if all corresponding pairs of alternatives in all those other choices
are redundant too, which is generally not the case.

On the dimension level, we can consider the equivalence of tags. We define that two tags ti and t j are
equivalent in context C, written as ti ∼C t j, if JC[dim D〈tn〉 in e]K is unchanged by swapping tags ti and
t j; that is, if

JC[dim D〈tn〉 in e]K = JC[dim D〈t1, . . . , t j, . . . , ti, . . . , tn〉 in e]K

Tag equivalence is in a sense a stronger property than equivalence of alternatives since a dimension
that defines two equivalent tags can bind many choices, and thus the equivalence has a broader scope.
However, equivalent tags do not imply equivalent alternatives, which can be seen in the following simple
example.

eab = dim A〈a,b〉 in A〈A〈1,2〉,1〉

It is clear that selection with either A.a or A.b produces 1 as a result; that is, tags a and b are equivalent.
However, neither pair of alternatives in either of the two bound choices is equivalent.

Two equivalent tags are redundant with respect to each other, and therefore, one of them can be
safely removed, because the removal is variant preserving. Removing a tag amounts to reducing the
size of a dimension and all of its bound choices by one and is done as follows. If ti ∼C t j, replace
the dimension declaration dim D〈tn〉 with dim D〈t1, . . . , t j−1, t j+1, . . . , tn〉 and every choice D〈en〉 bound
by that dimension with D〈e1, . . . ,e j−1,e j+1, . . . ,en〉. We write τ̄C/t j(e) for applying this simplification
operation to an expression e with e = C[dim D〈tn〉 in e′]. For our examples we obtain the following
possible removals.

τ̄C/a(eab) = dim A〈b〉 in A〈1〉 τ̄C/b(eab) = dim A〈a〉 in A〈A〈1〉〉
τ̄C/a(eabx) = dim A〈b,x〉 in A〈1,9〉 τ̄C/b(eabx) = dim A〈a,x〉 in A〈1,9〉

Since an equivalent tag represents a redundancy in an expression, the systematic removal of equivalent
tags does not affect the represented variants. This is summarized in the following theorem.

Theorem 2 ti ∼C t j =⇒ τ̄C/t j(e)∼ e
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Figure 5: Factoring in program fields. Factoring amounts to reducing the common context shown for
alternatives in choices and thus emphasizes the closeness of different programs within a program field.
The formal basis for factoring is provided by the choice commutation rules shown in Figure 4.

Obviously, Theorem 2 applies to our examples eab and eabx. In the case of the expression eab, the
tag removal results in a dimension that contains only one tag and corresponding choices with only one
alternative each. Such dimensions and choices are trivially superfluous and can thus be eliminated. These
and other kinds of transformation are discussed in [6].

3.6 Program Fields

The integrated representation of programs and their variants provided by the choice calculus supports
a shift of focus away from single programs to whole sets of closely programs, which we call program
fields [5]. This is similar to zooming out from a single point in space to a region of surrounding points.

The change of perspective is rather gradual, as illustrated in Figure 5, which shows how two programs
{A�P�,A�Q�} that share a common part (that is, context) A can be represented by factoring out A to
produce A�{P,Q}�. This process is captured and formalized through the equivalences presented in
Section 3.3, specifically the rule C-S from Figure 4. The editing of program fields poses a non-trivial
challenge to user-interface design. We have investigated the impact of different concrete representations
on the comprehensibility by users. We will present some of the results in Section 3.11.

Program fields can change the process of software maintenance from a discrete, big-step program-to-
program hopping approach toward a smoother and more gradual transition between programs via closely
related alternatives. Programs are still conceived as discrete points, but they are connected to similar
programs in their neighborhood and not just isolated artifacts.

The program-field view also implies a shift from program transformations and program analyses
toward program-field transformations, which map sets of programs into new sets of programs. When
program fields are given by a variation representation, the description of program-field transformations
become effectively variation transformations, which must be able to express changes in the context of
variation and the addition and removal of variation, see Figure 6.

Similarly to the generalization of program transformations to program-field transformations is the
generalization of program analyses to program-field analyses. An example for such an analysis is the
process of variational type inference, which will be discussed in Sections 3.7 through 3.10.

3.7 Variation Types

The representation of variation in software logically requires compilers and analysis tools to take the
variation into consideration and ultimately also produce variational results. One such class of tools are
type checkers, which have to produce some of form of variational types to be of general use. As an
example, consider two different ways to implement a function in Haskell to find values in a lookup list

10



Figure 6: Visual illustration of the notion of an evolving program field. A program field is a view on
a huge set of related program variants. The evolution happens through the addition and removal of
variants. The systematic description of such evolutions is an application of variation programming,
discussed in Section 3.12.

of type [(a,b)]. In the first, we return a value of type Maybe b, possibly containing the first value in the
lookup list associated with a given key of type a.

find x ((k,v):t) | x == k = Just v

| otherwise = find x t

find _ [] = Nothing

In the second, we return a list of type [b], containing all of the values in the lookup list associated with
the key.

find x ((k,v):t) | x == k = v : find x t

| otherwise = find x t

find _ [] = []

Employing the choice calculus notation introduced in Section 3.1, we can represent the variation be-
tween these two function implementations by annotating the program in-place. First, we declare a new
dimension of variation, Res, representing variation in the function’s result. Then we indicate the specific
variation points in the code using choices that are bound to the Res dimension.

dim Res〈fst,all〉 in
find x ((k,v):t) | x == k = Res〈Just v,v:find x t〉

| otherwise = find x t

find _ [] = Res〈Nothing,[]〉

The Res dimension declaration above states that we can select one of two tags in the dimension: fst,
to return the first found value, or all, to return all found values. The two choices in the body of the
function are synchronized with these tags. For example, if we select the fst tag in the Res dimension, the
first alternative in each of the two choices in the Res dimension will also be selected, producing the first
function definition above.

The interesting aspect of this example here is that it illustrates that the types inferred in a variational
program are, in general, also variational. For our find function, we infer the following variational type
which also contains a choice in the Res dimension.1

find :: a -> [(a,b)] -> Res〈Maybe b,[b]〉

Variational types, shown in Figure 7, are given by type expressions that are extended by choices. Vari-
ational types are like other tree-structured values that can be made variational through the use of the
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T ::= τ Constant Type
| a Type Variable
| T → T Function Type
| D〈T, ...,T 〉 Choice Type
| ⊥ Error Type
| > OK Type

Figure 7: Variational types. Alternative types that are not instances of one another can be represented
through choices. Variational types are subject to factoring and other equivalence transformations that
are valid for the choice calculus in general. Error (and OK) types allow the partial typing of programs
in which some of the variants contain type errors.

choice calculus representation.
Constant types, type variables, and function types are as in other type systems—plain types con-

tain only these three constructs. Non-plain types may also contain choice types. Choice types encode
variation in types in the same way that choices encode variation in expressions, with the exception that
dimension names in types are globally scoped (see [3] for the rationale of this design decision). The
purpose of the error and OK types will be explained later in Section 3.10.

3.8 Variational Type Systems

The purpose of a variational type system is to define the types of programs that contain variations.
As illustrated in the Section 3.7 this may lead to choices in the derived type expressions. The key
contribution of a variational type system is a set of rules that (1) define the introduction of choice types at
the right places and (2) allow the normalization of choice types, which supports a more expressive form
of typing through an equivalence predicate on types.

The association of variational types with programs is determined by a set of typing rules, an excerpt
of which is shown in Figure 8. The programs that are being typed are expressions of variational lambda
calculus, which is lambda calculus extended by the constructs of the choice calculus. To keep this
presentation simple and focused, we omit the formal definition of variational lambda calculus here as
well as much of the technical machinery that is involved in the definition of the type system.

A typing judgment has the form ∆,Γ ` e : T , which states that expression e has type T in the context
of environments ∆ and Γ. Environments are implemented as stacks, where E⊕ (k,v) means to push the
mapping (k,v) onto environment E, and E(k) = v means that the topmost occurrence of k is mapped to
v in E. The Γ environment maps variables to types and is the standard typing environment for lambda
calculus. It is used as expected in the typing rules for variables and abstractions. The ∆ environment maps
expression-level dimension names to globally unique type-level dimension names. These mappings are
added by the T-DIM rule and referenced by the T-CHOICE rule. The use of this environment also ensures
that every choice is well dimensioned.

Most of the rules are straightforward extensions of the rules found in lambda calculus. The typing
of applications is slightly more complex in the presence of variation, however, so the T-APP rule differs
from the standard definition. Rather than requiring that the type of the argument and the argument type
of the function are equal, we instead require that they are equivalent using the equivalence relation ≡
introduced in Section 3.3. The reason for this change is that requiring type equality between the type of

1To keep the following discussion simpler, we omit the Eq type class constraint on a.
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T-CON
c is a constant of type τ

∆,Γ ` c : τ

T-ABS
∆,Γ⊕ (x,T ′) ` e : T

∆,Γ ` λx.e : T ′→ T

T-VAR
Γ(x) = T

∆,Γ ` x : T

T-APP
∆,Γ ` e1 : T1 ∆,Γ ` e2 : T2 T1 ≡ T2→ T

∆,Γ ` e1 e2 : T

T-DIM
∆⊕ (D,D′),Γ ` e : T D′ is fresh

∆,Γ ` dim D〈t1, . . . , tn〉 in e : T

T-CHOICE
∆,Γ ` e1 : T1 . . . ∆,Γ ` en : Tn ∆(D) = D′

∆,Γ ` D〈e1, . . . ,en〉 : D′〈T1, . . . ,Tn〉

Figure 8: Typing rules for assigning variational types. Most of the rules are simple extensions of the
standard typing rules for lambda calculus. The use of type equivalence in the rule for function application
extends the range of type-correct programs.

the argument and the argument type of the function is too strict. We demonstrate this with the following
example.

dim A〈a,b〉 in succ A〈1,2〉

By the T-DIM typing rule, the type of this expression will be the type of the application in the scope
of the dimension. The LHS of the application, succ, has type Int→ Int; the RHS, A〈1,2〉, has type
A〈Int,Int〉. Since Int 6= A〈Int,Int〉, the T-APP typing rule will fail under a type-equality definition of
the ≡ relation. This suggests that equality is too strict a requirement since all of the individual variants
generated by the above expression (succ 1 and succ 2) are perfectly well typed (both have type Int).

Although the types Int and A〈Int,Int〉 are not equal, they are still in some sense compatible, and
are in fact compatible with a great many other types as well. We can formalize this notion by defining
the ≡ type equivalence relation used to determine when function application is well-typed. The example
above can be transformed into a more general rule that states that any choice D〈T1, . . . ,Tn〉 is equivalent
to type T if all alternative types in the choice type are also equivalent to T . This relationship is captured
formally by a choice idempotency rule, which is described in detail with many other other rules in [3].

The most important property of the variational type system is that any plain expression that can be
selected from a well-typed variational expression is itself well typed and has a plain type that is obtained
by essentially the same selection. This result is formalized in the following theorem, for which we require
some auxiliary notation. Since tags are not represented explicitly at the type level, we must extend the
notion of tag selection to types using an alternative notion of selectors, which are basically indices that
identify alternatives in choices by their position. The notation D.t (s) indicates a list of tags (selectors),
that is, a decision. The function ϕe is a function derived from e that maps tag sequences to corresponding
selector sequences. This is needed since the semantics of variational types use selectors in decisions
rather than tags. The function ϕe also manages choice renaming in e since types are dimension linear
(see Section 3.4).

Theorem 3 (Type preservation) If ∅,Γ ` e : T and (D.t,e′) ∈ JeK, then Γ ` e′ : T ′ where ϕe(D.t) = s
and (s,T ′) ∈ JT K.
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3.9 Variational Unification & Variational Type Inference

The type inference algorithm for variational lambda calculus is an extension of the traditional algo-
rithm W by Damas and Milner. The most critical part of this extension is an equational unification for
variational types that respects the semantics of choice types and allows a less strict typing for function
application. The equational theory, called CT, is defined by the type equivalence relation sketched in
Section 3.8.

To get a sense for the problem of CT-unification, consider the following unification problem.

A〈Int,a〉 ≡? B〈b,c〉

Here is a list of potential unifiers for the above problem. In the unifiers, type variables other than a, b,
and c are assumed to be fresh.

1. σ1 = {a 7→ Int, b 7→ Int, c 7→ Int}

2. σ2 = {b 7→ A〈Int,a〉, c 7→ A〈Int,a〉}

3. σ3 = {a 7→ B〈Int, f 〉, b 7→ Int, c 7→ A〈Int, f 〉}

4. σ4 = {a 7→ B〈 f ,Int〉, b 7→ A〈Int, f 〉, c 7→ Int}

5. σ5 = {a 7→ B〈d, f 〉, b 7→ A〈Int,d〉, c 7→ A〈Int, f 〉}

6. σ6 = {a 7→ B〈A〈i,d〉,A〈 j, f 〉〉, b 7→ B〈A〈Int,d〉,g〉,c 7→ B〈h,A〈Int, f 〉〉}

After applying any one of these unifiers, the types of the LHS and RHS of the unification problem are
equivalent. We observe that σ6 is the most general of these unifiers. In fact, it is the most general unifier
(mgu) for this unification problem; by assigning appropriate types to the type variables in σ6, we can pro-
duce any other unifier. For example, composing σ6 with {i 7→ d, j 7→ f ,g 7→ A〈Int,d〉,h 7→ A〈Int, f 〉}
yields σ5, which is in turn the most general among the first five unifiers.

To motivate our approach to unification, consider the following example unification problem.

A〈Int,a〉 ≡? A〈a,Bool〉

We might attempt to solve this problem through simple decomposition, by unifying the corresponding
alternatives of the choice types. This leads to the unification problem {Int≡? a, a≡? Bool}, which
is unsatisfiable. However, notice that {a 7→ A〈Int,Bool〉} is a unifier for the original problem, so this
approach to decomposition must be incorrect.

The key insight is that there is a fundamental difference between the type variables in the types a,
A〈a,T 〉, and A〈T,a〉, even though all three are named a. A type variable in one alternative of a choice type
is partial in the sense that it applies only to a subset of the type variants. In particular, it is independent
of type variables of the same name in the other alternative of that choice type. In the above example,
the two occurrences of a can denote two different types because they cannot be selected at the same
time. The important fact that a appears in two different alternatives of the A choice type is lost in the
decomposition by alternatives.

We address this problem with a notion of qualified type variables, where each type variable is marked
by the alternatives in which it is nested. A qualified type variable a is denoted by aq, where q is the
qualification and is given by a set of selectors (see Section 3.8). In addition to the traditional operations
of matching and decomposition used in equational unification, our unification algorithm uses two other
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operations: choice type hoisting and type variable splitting. These are needed to transform the types
being unified into more similar structures that can then be matched or decomposed; see [3] for details.

We have proved several results about the unification problem, our unification algorithm that uses
qualified type variables, and how it correctly implements variational unification. The most important
result about variational type inference is that it is sound and complete. Since the algorithm exploits the
sharing of common contexts in choices and also the reduction of choices through implicit application of
the C-C-MERGE rule, the implementation is much more efficient than the naive, brute-force approach of
generating all variants and checking them separately.

All technical details about the correctness of unification and type inference as well as empirical
results about the performance of variational type inference can be found in [3].

3.10 Error-Tolerant Variational Type Systems

A limitation of the variational type system described in Section 3.8 is that it is too strict with regard
to failure in the sense that it will produce a type error for a whole program field if any of the program
variants in it contains a type error. In particular, this prevents a user from seeing the types of type-correct
invariants, and it also does not provide any information about which variants are type incorrect. To lift
these limitations, we have to extend (a) variational types by an error type (as shown in Figure 7) and (b)
the type inference rules and algorithm by a mechanism that allows the continuation of type inference in
the presence of type errors.

To demonstrate, suppose we add a new dimension of variation to our find function introduced in
Section 3.7, Arg, that captures variation between looking up values based on an example key (as above)
or looking up values based on a predicate on keys. We name the tags corresponding to these possibilities
val and pred, respectively.

dim Arg〈val,pred〉 in
dim Res〈fst,all〉 in
find Arg〈x,p〉 ((k,v):t)

| Arg〈x == k,p k〉 = Res〈Just v,v:find x t〉
| otherwise = find Arg〈x,p〉 t

find _ [] = Res〈Nothing,[]〉

Since we can make our selections in the Res and Arg dimensions independently, this new expression rep-
resents four total program variants. We expect variational type inference to infer the following variational
type for our new implementation of find.

find :: Arg〈a,(a -> Bool)〉 -> [(a,b)] -> Res〈Maybe b,[b]〉

But there is an error in the above definition that causes variational type inference to fail. The error is that
the variable x is unbound in find x t if we select Arg.pred and Res.all.

This can be easily fixed by replacing x with the choice Arg〈x,p〉. The problem is that the type
inference algorithm presented in Section 3.9 provides no hint at the location of this error—it just fails,
indicating that there is an error.

We have extended variational type inference to return partially correct variational types—that is,
variational types containing errors. For example, the errorful variational type of our find function can
be written as follows, where ⊥ is a special type that indicates a type error at that location in the type.

find :: Arg〈a,(a -> Bool)〉 -> [(a,b)] -> Res〈Maybe b,Arg〈[b],⊥〉〉

This type indicates that there is a type error in the result type of the function if the second tag is chosen
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from each dimension (Arg.pred and Res.all). This extension therefore directly supports the location
of type errors in variational programs. Similarly, it supports type inference on incomplete variational
programs—programs in which only some variants are in a complete and type-correct state—a quality
which is needed for incremental development.

The addition of error types is a non-trivial extension to the type system and inference algorithm. In
particular, there are many subtle implications for the unification of variational types. In the case of an
unbound variable, as above, the location of the error is obvious. However, often there are many possible
candidates for the type error, depending on how we infer the surrounding types. The goal is to assign
errors such that as few variants as possible are considered ill-typed, that is, to find a type that is most-
defined. This goal is in addition to the usual goal of inferring the most general type possible.

It is not immediately obvious whether these two qualities of types are orthogonal. We have shown
that they are and have developed an inference algorithm that identifies most-defined, most-general types.

The essential change to the type system happens in the T-APP rule for typing function applications,
extending it to support partial types. Specifically, the premise T1≡ T2→ T is replaced by three conditions
that facilitate the introduction of error types in case the equivalence is not achieved.

T-APP
∆,Γ ` e1 : T1 ∆,Γ ` e2 : T2 ↑(T1) = T ′2 → T ′ P = T ′2 ./ T2 T = PCT ′

∆,Γ ` e1 e2 : T

There are essentially two ways that error types can be introduced: (1) If we cannot convert the type of the
left argument T1 into a function type T ′2 → T ′, and (2) if T ′2 does not match T2, the type of the argument.
The introduction of errors in the second case is handled by matching the two types using a ./ operation
to produce a typing pattern P, then masking the result type T with P. In the first case, we employ a helper
function ↑, which lifts a function type to the top level, introducing error types as needed.

The details can be found in [2], where we also prove the main results, which are essentially the
generalization of the results described in Sections 3.8 and 3.9 to the case of partial/error types.

3.11 Editing Documents Containing Variations

The maintenance of code that contains variation poses several challenges. For example, when editing
a piece of variational code it is not always easy to see which parts of different variants go together or
depend on one another. Moreover, judging which context information (including definitions of variables,
etc.) is effective for which variant can also be a quite difficult task.

The choice calculus has been developed as a formal representation to support working with variations
and, as reported above, has proved to be effective in the design and analysis of variational code. One
additional important question is how well the choice calculus concepts can support user interfaces for
editing variational programs, and how this compares to the use of C Preprocessor (CPP) directives, which
are currently the de facto standard for representing variation in code.

To this end, we have developed a GUI representation and implemented a simple prototype for it. An
example of the prototype’s interface is shown in Figure 9. The prototype is divided into two columns.
The left column shows the dimension area, where users can choose which program variant they want
to see. In the terms of CPP, it is a way of grouping related macros together. The right column of the
prototype is called the code area and contains the source code of the currently selected program variant.
The current selection in the dimension area is called a configuration. When users change a configuration
on the left, the corresponding code on the right is updated. Code that is highlighted in the code area
represents code that is only included for this particular configuration. The colors of the highlighted code
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match with the colors of the code’s related dimensions. Notice that here we have some blue code inside
of the pink code. This is code that is included only if both of the corresponding options are selected in
the dimension column.

Figure 9: The variation editor prototype. It provides a visual representation of dimensions and choices.
The connection of choices to their binding dimensions is expressed using matching background colors.

Obviously, our GUI prototype removes noisy CPP syntax and uses colors to highlight code, but in
addition to this syntactic aspect, it also provides a virtual form of separation of concerns by only showing
the code that is related to the currently selected configuration. However, these features come at a cost:
First, there is a need for the user to switch between different configurations. Second, there is a loss of
context in which a variation point occurs; that is, we can only see the code of one variant at a time, and
not how the code differs in other variants. So it is not at all obvious that the proposed representation
performs better in terms of software understanding. In fact, there has been prior evidence that including
only a subset of these features does not significantly improve understanding for some kinds of tasks.

We have performed a user study that has focused primarily on comparing subjects’ performance in
reading and understanding code in both CPP and the prototype. Specifically, we have tried to assess
the accuracy and speed with which participants were able to determine the number of variants in the
code and the behavior of specific variants. We recruited 31 undergraduate students as participants that
passed a screening test to confirm a basic understanding of C and CPP. This group included 2 female
subjects and 29 male subjects. On average, students had taken 4.9 programming courses (3.4 std. dev.)
and 1.6 of those involved C or CPP (1.5 std. dev.). 8 of the 31 participants had professional programming
experience, and 7 had experience on open-source projects and 2 had both. Of these 13 subjects, 6 used
C or CPP at their job or on their open-source projects. 25 out of 31 subjects claimed to use C or CPP in
their own personal work.

The results of the study, described in detail in [8], show that participants were significantly more ac-
curate and faster in determining the number of variants using the prototype than using CPP (paired t-test,
t =−15.0721, df = 30, p = 1.543×10−15). Subjects were also significantly more likely to score higher
on variant comprehension questions when using the prototype than when using a CPP representation
(paired t-test, t = −4.6032, df = 30, p = 7.127× 10−5). These outcomes are matched by the subjects’
personal judgments that the prototype was easier to use for the tasks than CPP.

3.12 Variation Programming

The choice calculus offers a static representation of variation. The only operation on variational artifacts
that it directly supports is that of selection. In practice, variation structures undergo changes like any
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other software artifacts. It is important to remember that the choice calculus is itself already representing
changes in software by offering choices, but it always does so by providing only a particular snapshot at
a specific time. One way to support the maintenance of variation structures that was discussed in Section
3.11 is to offer editing functionality through a graphical user interface. A more general approach is to
provide language support to query and transform variation representations.

To explore this idea we have developed a domain-specific embedded language (DSEL) in Haskell
for constructing and manipulating variational artifacts. The embedding into Haskell makes it possible to
define far-reaching transformations of variation structures while getting certain correctness guarantees
through Haskell’s expressive type system.

In the DSEL, both the variation representation and any particular object language are represented as
data types. The data type for the generic variation representation is given below. It adapts the dimension
and choice constructs from the choice calculus into Haskell data constructors, Dim and Chc. The Obj

constructor will be explained below. In this definition, the types Dim and Tag are both synonyms for the
predefined Haskell type String.

data V a = Obj a

| Dim Dim [Tag] (V a)

| Chc Dim [V a]

The type constructor name V is intended to be read as “variational”, and the type parameter a represents
the object language to be varied. So, given a type Java representing Java programs, the type V Java

would represent variational Java programs.
The Obj constructor is roughly equivalent to the object structure construct from the choice calculus.

However, here we do not explicitly represent the structure as a tree, but rather simply insert an object lan-
guage value directly. An important feature of the DSEL is that it is possible for the data type representing
the object language to itself contain variational types (created by applying the V type constructor to its
argument types), and operations written in the DSEL can query and manipulate these nested variational
values generically. Note that we have omitted the sharing-related constructs from the definition of V. This
decision is discussed in detail in [7].

To instantiate the variational type to a concrete object language we have to define a data type for
that object language. As mentioned it is important that this data type includes references to the V type
constructor to enable recursively nested occurrences of choices and dimensions. There are different ways
of achieving this. The advantages and disadvantages of the different approaches are also discussed in [7].

Finally, having fixed the representation of the choice calculus and the object language, we can de-
fine operations to create choices and dimensions, to extend and alter them, or to move them or merge
them. This embedding of the choice calculus into Haskell offers a rich environment for exploring all
kinds of transformations for maintaining variations. The developed DSEL demonstrates how variation
programming tasks can be solved systematically. The scope of the DSEL is limited by the fact that it
separates variation representation and transformation into two levels. To address this limitation, we have
also developed a generalization of the choice calculus that includes computational features so that choice
annotations and transformations can be arbitrarily mixed and nested [9].
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